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The methods of nonlinear thermomeehanies  of continuous media are  used for an analysis  of 
t r ans fe r  phenomena in binary fluid mixtures .  F r o m  the derived relat ions,  as a special case,  
are then deduced fundamental re la t ions for  the thermodynamics  of i r r eve r s ib le  p r o c e s s e s  to 
descr ibe t r ans fe r  phenomena in binary mixtures.  

An attempt is made in this ar t ic le  to demonstrate  how the c lass ica l  problem of i r revers ib le  t h e r m o -  
dynamics can be solved by the method of so-ca l led  rational thermodynamics .  This method is based on a 
cr i t ical  review of continuum physics  according to Prof .  Truesde l l ' s  school of thought [1-5]. The scope of 
this method is very  broad: in principle,  it can render  an interpretat ion of i r r eve r s ib le  p r o c e s s e s  in any 
mater ia l .  

Using the example of a nonreact ing binary fluid mixture with a cer ta in  l ineari ty charac te r i s t i c ,  we 
will show that this method yields all the resul ts  known f rom the theory of i r revers ib le  thermodynamics  
(see also [8-14] and, especially,  [15-19]). 

Charac ter i s t ic  of rational the rmodynamics  is an a pr ior i  definition of fundamental concepts (includ- 
ing the thermodynamic  concepts [2-7]); 

t is time; x is the radius vec to r  of space coordinates;  v a is the velocity of component a (a = 1, 
2) of the mixture; Pa is the density (weight concentration) of component a,  Pa > 0; T is the 
tempera ture ,  T > 0; pa  is the part ial  internal energy of component a;  sa  is the part ial  entropy (1) 
of component a;  J is the thermal  flux; k s is the momentum source  in component a originating 
in the other component; T a is a part ial  tensor  of s t r e s s e s  in component  a;  F a is the external 
force per  unit mass  of component a; and a is the increase  in entropy. 

On the basis  of the concept of a mixture as a superpostt ion of one-component  substances  [1], we im-  
pose on these quantities the following res t r i c t ions  expressed  in t e r m s  of conservat ion postulates (with r e -  
spect to a volume V with a surface ~2 defined in space coordinates  [1, 3, 20, 21]: 

a. conservat ion of mass ,  r e f e r r ed  to component a (of a nonreact ing mixture) 

d 
d ~ , f  p~dV = _ S  p~v .d~, (2) 

V ~ 

b. conservat ion of momentum, r e f e r r ed  to component a 

dr-  p~vadV = --  p~v~ (v~.d~2) -~ T~.d{~ pa ~d~ -7 k~dV, (3) 

V ~ 2  g~ . V V 

*Rational thermodynamics ,  in the au thor ' s  view, is par t  of the l inear  the rmomechan ics  of continuous m e -  
dia. This new trend in the theory of t r ans fe r  phenomen is a very  p rogress ive  one and rep resen t s  a fur ther  
development in the thermodynamics  of i r r eve r s ib le  p rocesses .  In featuring this ar t ic le  here ,  the edi tors  
wish to acquaint the r eade r s  with some interest ing specific resul ts  which the author has obtained in his work 
on the theory of t r ans fe r  in a binary mixture using the methods of continuum thermomechan ics  (see A. B. 
Lykov [32-35], Russian ed i to r ' s  note). 
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with 

k~ - 0 (4) 

2 

(for brevi ty ,  ~ means  ~ ). 

c. conserva t ion  of the momen t  of momentum,  r e f e r r e d  to a mix ture  component  (this r e s t r i c t s  us  to 
nonpolar  m a t e r i a l s  [5]) 

dt 
V fl f~ V V 

(conservation of these  quanti t ies  r e f e r r e d  to an ent i re  mix tu re  involves a summat ion  with r e spec t  to all 
components ,  with (4) taken into account). 

d. conserva t ion  of energy  in the mix ture  (no energy t r a n s f e r  by radia t ion is a s s u m e d  to occur)  

i 2 -'~ 

~2 ce V a ~ 

(6) 

with 

e. Second Law of The rm odynam i cs  

J • d~-i- ~ adV, "~-S ~_~ p~s~dV = ~ P~'s~v~'dfl-- ~ T 
V o; ~ ~z fl V 

cr~O.  

(7) 

18) 

These equations of balance differ  f r o m  those used  in [15-19]. 

By well known opera t ions ,  these  pos tu la tes  a r e  t r a n s f o r m e d  to the following local  t e r m s :  

f r o m  (2) we obtain the equation of m a s s  continuity for  component  a 

0p~ +~.(p~v~) =0 ;  
Ot 

(9) 

f r o m  (5) and (3) we obtain the s y m m e t r y  of par t ia l  s t r e s s  t en so r s  

and, with the aid of this equation, we obtain f r o m  (3) 

o 

Ot ' 

(10) 

(11) 

(the symbol  ® denotes a diad). 

T r a n s f o r m i n g  (6) to local  t e r m s  and e l iminat ing the kinetic energy  with the aid of (11), we obtain the 
F i r s t  Law of T h e r m o d y n a m i c s  

(the symbol  : denotes summat ion  ove r  both t enso r  indices}. Finally,  (7) and (8} yield the Claus ius- -Duhem 
inequali ty 

= - ~  (~s~) + v.(e~s~v~) + v- > 0. (13) 

With F a a s s u m e d  known and a defined according  to Eq. (13) (from now on we will use  only the inequality 
in (13)), while k 2 and three  components  of t e n s o r s  T a a r e  defined according  to Eqs.  (9) and (10), the nine 
remain ing  equations (9), (11), (12) a re  not sufficient for  defining the 31 unknowns: 
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T, p~, tt a, s~, J, v~, k 1, T~ (symmetrical) (14) 

as  functions of x and t. This  is unders tandable ,  inasmuch as the genera l  equations cons ide red  so fa r  do 
not e x p r e s s  the specif ic  p r o p e r t i e s  of the m a t e r i a l .  

These  p r o p e r t i e s  appea r  in the defining equations for  an ideal ma te r i a l ,  i . e . ,  a model  which s i m u -  
l a tes  the given rea l  m a t e r i a l  with emphas i s  on the p r o p e r t i e s  that  a re  impor tan t  under  conditions of con-  
ce rn  he re  [1-7]. F o r  a formula t ion  of the defining equations,  it would be ve ry  appropr ia te  to use  the gen-  
e r a l  and lucid ax ioms  of continuum t h e r m o m e c h a n i c s  [1, 2, 7]. 

F o r  our l inea r  b inary  fluid mix tu re  we will postula te  the 22 n e c e s s a r y  defining equat ions in the fo l -  
lowing way [15, 18, 19]: the quant i t ies  

u,z, s~, J, k 1, T~ (15) 

a r e  functions of the following independent va r i ab les :  

T, p,, P2, vT, VPl, VP~, vl, v2, V| V| (16) 

and l inear i ty  of vec to r  and t en s o r  quant i t ies  is pos tula ted  in the sense  that the defining equations for  (15) 
a re  po lynomia ls  of not h igher  than f i r s t  degree  with r e spec t  to components  of v e c t o r s  and t en so r s  (16) (they 
may be a r b i t r a r y  functions of s c a l a r s  in (16)). 

In this formula t ion  we have a l ready  used some ax ioms  of continuum the rmomechan i c s .  According 
to the ax ioms  of causa l i ty  and de t e rmin i sm,  the v a r i a b l e s  in the defining equations should re f lec t  pas t  and 
p r e sen t  motion (deformation) of the m a t e r i a l  as well as  past  and p r e sen t  t e m p e r a t u r e  f ields,  and the v a r i -  
ab les  (16) mee t  this  qualif ication (it i s  c h a r a c t e r i s t i c  of a fluid, in fact ,  that  i ts  deformat ion  can be ex-  
p r e s s e d  only in t e r m s  of the density Pc~ [3, 7, 11, 13, 16, 18]). The h i s to ry  is  r e f l ec ted  he re  only in the 
ve loc i t i e s  and the i r  t ime  de r iva t ives  (memory  axiom [7]), and the influence of only the immedia te  vicini ty  
is re f lec ted  in the spat ial  g rad ien t s  (locality axiom).  All s t ruc tu ra l  equations for  (15) contain the s ame  
v a r i a b l e s  (16) (s imultanei ty  axiom).  

These  defining equations for  (15)-(16) can be substant ia l ly  s impl i f ied  as a consequence of the ob jec -  
t ivi ty axiom [1, 2, 3, 7], which s ta tes  that  a p rope r ty  of a m a t e r i a l  does not depend on the motion of the 
o b s e r v e r ,  i . e . ,  that the defining equations mus t  be invar iant  with r e spec t  to any t rans la t ion  of the origin,  
to any rotat ion and ref lec t ion  of space coord ina tes  (during any even nonuniform motion of the obse rve r ) ,  
and a lso  with r e s p e c t  to the beginning of the t ime  count. Without going into detail,  we will only p re sen t  the 
resul t s .  The object ivi ty  axiom mus t  be appl icable  (t. e . ,  object ive mus t  be) espec ia l ly  the independent 
v a r i a b l e s  in the defining equat ions.  This  m a t ches  with the absence  of the nonobject ive quant i t ies  x and t 
among those in (16) (their inclusion he re  would be expected  as  a consequence of the causal i ty  axion), while 
the quant i t ies  in (15)depend on those v a r i a b l e s  only through the quant i t ies  in (16). The nonobject ive quan-  
t i t i es  in (16) v a  and V | v a  mus t  appea r  in the following object ive combinat ions  [15]: in the diffusion ra te  
of component  1 re la t ive  to the ve loc i ty  of component  2 

in the par t ia l  t enso r  of s t ra in  r a t e s  

and in 

V l  2 - - -  V l  - -  V2~ 
(17) 

d~ -_-z ~ [V| -}- V| (18) 

1 
.o.1~ . . . .  [(V| 1 - -  V| - -  (V|174 (19) 

2 
Thus, the defining equations for  (15) a re  e x p r e s s e d  as functions of the v a r i a b l e s  

T, 91, P~, VPl, V-~P2, V T, Vl~, dl, d~, ax2, (20) 

l inea r  with r e spe c t  to the components  of four  v e c t o r s ,  two s y m m e t r i c  t enso r s ,  and one a n t i s y m m e t r i c  t en -  
sor  (by v i r tue  of (17), (18), and (19), the l inear i ty  with r e spec t  to v e c t o r s  and t e n s o r s  in (.16) is  m a i n -  
tained). 

The object ivi ty  axiom has  mos t  influence on the f o r m  of the defining equat ions [2, 7]. The i n v a r -  
iance with r e s p e c t  to rotat ion and ref lec t ion of coord ina tes  r equ i r e s  that all s ca l a r ,  vec to r ,  and a lso  
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(symmetr ic)  t ensor  functions in (16) be isotropic.  
vec to r  and t ensor  components,  have the fo rm  [22, 23]: 

u~ --: (~ -~ (X!ur .+  ~)u~trd~, 

S~ = (~ + (~)satrd~ + (~)s~trd~, 
-.)- 

J : - - vv,  + + 

Such functions of var iab les  (20), l inear  with respec t  to 

(21) 

(22) 

(23) 

(24) 

(25) 

where a ,  ~ = 1 ,  2, all the coeff icients  (~ a ,  (1)u a ,  (2)u a ,  (~ a ,  0)s a ,  (2)sa, ~t, 7, ~l, ~2, as, ~1, ell, 
em 71a~, ~a~, P a  are  (arbi t rary)  functions of T, pl, and P2, where U is the unit t ensor  and . ~  is the non-  
divert ive tensor  of s t ra in  r a t e s  in component fl of the mixture .  

The admissibi l i ty  axiom states  that the defining equations must  eo r respond  to the conservat ion pos -  
tulates  (9), (11), (12), and the C!ausius--Duhem inequality (13) under  all possible deformat ions  of the m a -  
te r ia l  and dis tor t ions of the t e m p e r a t u r e  field. This is the gist of the powerful Coleman--Hal1 method [4], 
which leads up to rat ional the rmodynamics  [2, 3, 6]. We inser t  (12) into inequality (13) and obtain 

(~T = - -  Ot P~f= - -  -V" (pJ=v~) - -  k 1-V,~ - -  �9 VT 

where the following definition of par t ia l  f ree  energy in a component 

fa ::: us - -  Tsa. (27) 

has been used. In inequality (26) we replace  the corresponding quantit ies by the i r  defining express ions  (21)- 
(22) and, a f te r  lengthy t rans format ions ,  we obtain an unwieldy inequality of the following form: 

i j k , l  m n ,p  r , s , t ,  u , v , w  

w h e r e Z  i, Yj, and X l denote 0T/Ot, Otrd_da/Ot, and components of the following vec to r s  and t e n s o r s ~ ( t r d a ) .  
Vp a ,  VT, dot ,  v a  respect ively .  Coefficients c i, bj, bkl, buv w, a m, anp, and a r s  t a re  functions of T, Pl, 
and P2 only. 

The Coleman--Hall  method [4] is based on the following theorem:  in o rde r  that inequality (28) be 
sat isf ied under all possible deformat ions  of the mater ia l  and dis tor t ions of the t empera tu re  field, i . e . ,  
at all possible values  of the independent var iab les  Z i, Yj ,  X l {any rea l  values) and Pl, P2, T (only posit ive 
values),  it is nece s sa ry  and sufficient that all coeff icients  

c i =- b.i =: bhz : a~ = a m == b .~  -= 0 (29) 

be equal to zero  and the remaining quadratic fo rm be posi t ive-semidef ini te .  

The sufficiency par t  of this t heo rem is obvious (a semidefini te  fo rm re ta ins  i ts sign for  any real  Xn), 
while the necess i ty  par t  of it is demonst ra ted  by the existence of such real  Zi, Yj, X l for  which the sense 
of inequality (28) changes when any coefficient  in (29) is not zero.  

The final r e su l t s  of applying this theorem are  as follows: 

092 ' 

(30) 

(31) 

(32) 

(33) 

(34) 

(1)U a = C2)ua = 0, 

(1)S~ -- (2)S~ = 0, 

ell : D2 0p 1 , El2 : - - D 1 - -  

0f 
OT 

Pa 
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and the remaining quadrat ic  fo rm 

To r = [~1V12 JU ~VI2,VT + T (~v)2 ~-" ;0~ (r @- 

iS posi t ive-semidef in i te  so that for  the coeff ic ients  (functions of T, /91, P2) we have 

~ 1 > 0 ,  •  

[l~i "• 1 tP ~ O, 
T 4 t 

1 
3111 > 0, ~]o 2 > 0, ~]111122 ~ (1122 ~- 1121) 2 ~ O, 

1 
~,~ > o, ~0.~ >~ o, ~ , ~ ,  - - -  (~12 + ~0.~)~ > o. 

4 

In (30)-(39) we have used the following definitions: free energy of the mixture 

entropy of the mixture  

S ~ ~ WaScz , 

density of the mixture  p and weight f rac t ion wa of component 

chemical potential of component a 

and 

E Z p ~  p~, w ~  , w,~= 1, 

od 

7 dfa 
1~ ~ a i ! T Pl -0T-  - -  Plsl" 

The sign A above a symbol indicates  that the respec t ive  quantity is a function of T, Pl, and P2" 
by vi r tue  of (30), (21), and (22), all quanti t ies (27), (40), (41), (43), 
var iab les  only. 

Thus, in the final fo rm,  the defining equations become 

u~ ='u~(T, Pi, P2), 

s~ = s~(T, Pi, P2) 

with the p roper ty  (33), (34) 

(3s) 

(36) 

(37) 

(3s) 

(39) 

(40) 

(41) 

(42) 

(43) 

Indeed, 
and (32) are  functions of these three  

(44) 

(45) 

J : - -  • - -  7Vi2, (46) 

all 0s VPi - -  Pi V92- (47) 

Coefficients z ,  T, a l ,  /31 are  functions of T, Oi, P2 and sat isfy (36), (37). 

The defining equations (25) remain  unchanged, where ~aB and ~afi sat isfy (38), (39) and are  func- 
t ions of T, Pl, P2. This is t rue  also for  P a '  which may be called the par t ia l  p r e s s u r e  of component a and 
is re la ted  to the thermodynamic  quanti t ies through Eq. (34). 

Let us focus our  attention on the thermodynamic  re la t ions  (33), (34), (27), (40), (41), (42), (44), (45) 
only and supplement them with the following definitions: 

p r e s s u r e  of the mixture  

P = ~ p~, (4s) 
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tu re .  

specif ic  volume of the mix tu re  

specif ic  f r ee  enthalpy 

par t ia l  specif ic  volume of component  a 

l 
v = , ( 4 9 )  

P 

g ~- f + Pv, (50) 

1 P05 
v 0 5 - ~ - - ~ - -  - -  , ( 5 1 )  

Pe P 

specif ic  internal  ene rgy  of the mix tu re  

pa r t i a l  specif ic  enthalpy of component  

specif ic  enthalpy of the mix tu re  

u ---- ~ w~u., (52) 
G$ 

h~ --~ u~ + Pv~, ( 5 3 )  

(54) 
05 

Obviously, all these and the subsequent quantities are functions of T, Pl, and P2 only. 

Next, by various transformations of these formulas, we obtain the well known thermodynamic struc- 
We note the re la t ions  

g = ~w05~05, (55) 
6t 

~t05 == f05 --I- Pv~, (56) 

65 65 

P65 = Zp~p~ Oft 

and (34), which b e c o m e s  

Les s  known is the fo rm u l a  

F r o m  (33) and (34) we obtain 

d (pf) -- - -  psdT -t- Z b%dP~' 

where the differential  ope ra to r  d may  stand for  a/at ,  v ,  or  the substant ial  der iva t ive  

D .  0 .  
- - - - - -  + (v.v). 

Dt Ot 

Express ion  (59) can be eas i ly  t r a n s f o r m e d  into the well known Gibbs equations 

d (pu) = Td (ps) -~ Z ~dp~, 

du = Tds - -  Pdv -t- (~tl - -  ~t~) dw I. 

The las t  equation and re la t ion  (55) yie ld  the Gibbs- -Duhem equation for  the chemica l  potential:  

- - s d T  -}- vdP - -  Z w05d~t65 = O. 
05 

(58) 

(59) 

If  quanti t ies  ua ,  h(~, v a ,  s a ,  f a '  ga  a re  denoted by the symbol  Ya and the co r respond ing  quanti t ies  u, h, 
v, s, f, g a re  denoted by y, then obviously 

(60) 

(61) 

(62) 

(63) 
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y = ~ v = y = ,  (64)  
6~ 

y= = y~ (T, p~, P2), y -  ~(T, p~, P2). (65) 

Assuming the existence of the inversion P = I)(T, Pl, P2) = ~)(T, wl/v, (1--wl)/v), we can use the con- 
ventional variables T, P, w I (functions of these variables are denoted by the sign ~ ). Thus, (65) yields 

/]r = ~/cr T,  P, 7J)l), /] = ..,~(T, f ) ,  ["~/1)" (66)  

D e s p i t e  the c o m p l e t e  i d e n t i c i t y  b e t w e e n  t h i s  s t r u c t u r e  and tha t  of c l a s s i c a l  t h e r m o c h e m i s t r y ,  t h e r e  
i s  the  fo l lowing  d i s c r e p a n c y  be tween  t h e m :  the  q u a n t i t i e s  y ~  (excep t  u s )  do not  s a t i s f y  the  G i b b s - - D u h e m  
equa t ion ,  u n l e s s  the  fo l lowing  a d d i t i o n a l  c o n s t r a i n t  i s  i m p o s e d  on the q u a n t i t i e s  y ~ :  

E w ~  ~ w l - - 0  (67) 

It appears, however, that such an additional constraint (67) can always be introduced without any mod- 
ification of the preceding expressions, if to the variables t, x, v~, O~, T, Fs,  ~r from (1) are added the 
new v a r i a b l e s  u s ,  s ~ ,  k ~ ,  T ~ ,  which  d i f f e r  f r o m  the r e m a i n i n g  ones  in (1) by  a r b i t r a r y  func t ions  

uo - u o ( T ,  PI, P2~, s o = s~ (T, 91, P:) 

a s  fo l lows :  

w h e r e  

(68) 

"*i - -  u1 w2no' u: : u~ ~z'tu o, (69) 

s I : s 1 : 72'~so, s~ : -  s 2 ~4So, (70) 

J '  =- J T~'l~'2psoV12, (71) 

kl --: k I ~ (E,~,2,O/o), k~ = k 2 --  V(W~rz2pfo), (72) 

TI --- TI ~- (wlsy2p{o) U, T ~ - -  T 2 - -  (~,lyJ2Pfo) U. (73) 

fn - -  Uo Tso" (74) 

Indeed, if these definitions are used in the original equations (4), (11), I12), and (13) (Eq. (9) is not 
changed), then the form of these equations will remain the same also and the concepts on which the defining 
equations have been based will remain in force so that all results remain the same, if the corresponding 
quantities are replaced by dashed quantities (69)-q73). Some quantities will change accordingly, namely 

PI - P ,  ~'. . ,~o[o, P~ - P~ --- 72'I~:9fo, (75) 

/]i " " /]i - -  LL'2/]0, /]2 - -  /]2 72'1/]0' ( 7 6 )  

whereY0in (68) and (74), v 0 = - f 0 / p ,  andh 0=u 0+pv  0, #0= 0. 

On the other hand, most quantities remain unchanged: P, Ps, ~, and all y 's.  

The arbitrariness in the choice of functions (69)-(73) is physically obvious, as these quantities can- 
not be read directly (this would involve difficulties, for example, in determining the thermal flux). 

We will not take advantage of this arbitrariness, in order to reach full agreement with classical ther- 
mochemistry. Namely, we select functions u0, s o (we denote them by Y0) so that 

O~ 2 
/]o -= wl <9/]1 -~- wo (77) 

(Ys i s  u s and s~ ) .  With  the  a id  of  such  func t i ons  (77), q u a n t i t i e s  y ~  (def ined in (69), (70)) a c q u i r e  the  
n e c e s s a r y  p r o p e r t y  (67) and the  s a m e  can  be s a i d  about  the  r e m a i n i n g  q u a n t i t i e s  f0, v0, h0- 

Thus ,  ou r  y ~  q u a n t i t i e s  m a y  be c o n s i d e r e d  to  have  the  p r o p e r t y  (67) (here  and l a t e r  on we o m i t  the  
da sh  in o u r  no ta t ion)  and  i t  can  be e a s i l y  shown tha t  

2 
Oy 

and the  G i b b s - - D u h e m  e q u a t i o n s  

: Yl - -  / ] 2  (78) 
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2 

Oy dT -}- Oy dP--  Z w,flycz = O (79) 
OT OP 

are  then sat isf ied for  all y a '  s, including p~ (see (63)). 

A consequence of p rope r ty  (67) a re  also the fo rmulas  

2 

0 ~  _ s~, (80)  
OT 

2 

O~t= 
0--7 = v~. (81) 

We thus have a full agreement  with the s t ruc ture  recent ly  developed in the theory  of i r r e v e r s i b l e  t h e r -  
modynamics  [24, 25] and, as will be shown in the subsequent equil ibrium analysis ,  in complete agreement  
with the s t ruc ture  of c lass ica l  t he rmochemis t ry ,  since the quantit ies y~ with the p roper ty  (67) r ep re sen t  
par t ia l  specific quantit ies (analogs of par t ia l  mola r  quantities). Definition (51) may be regarded  as a gen-  
eral izat ion of Dalton's Law (in an ideal gas p~v~ r ep resen t s  a molar  f rac t ion [25]). 

Equil ibrium in rat ional  the rmodynamics  must  be defined as a special  kind of state,  since it does not 
follow f rom the postulates  introduced here .  Here in  l ies  the gist of the main difference between this  and 
other  theor ies  where the concept of equi l ibr ium is always valid, at leas t  implici t ly.  In the subsequent defi-  
nition of equi l ibr ium we s t r ive  toward an agreement  with p roper t i e s  usual ly expected under equi l ibr ium con-  
ditions. It is required,  f i r s t  of all, that during equi l ibr ium the change in entropy be zero:  

= 0 (82) 

at all positive values of T, Pl, and P2. 

This co r responds  to the minimum of the function a = a(X 1 . . . . .  X18 ) (see the lef t -hand sides of (35) 
and (28), (29)), while the n e c e s s a r y  conditions of a minimum are .  

0~ 
= o (83) aX,, 

and the ma t r ix  

is posi t ive-semidef ini te .  

OX~-OXp ' (84) 

This ma t r ix  is identical to the square mat r ix  in (35), except  for  the coeff icient  
2 /T.  If only the posi t ive-def ini te  ma t r ix  (84) is considered,  then (83) yields  the following conditions for  
equilibrium: 

V1~ --  O, (85) 

�9 vr = o ,  ( 8 6 )  

d, = d~ = 0, (87) 

which r ep resen t  the expected equi l ibr ium proper ty  (no diffusion, zero  t em p e ra tu r e  gradient ,  and zero  s t ra in  
ra te  tensors ) .  The res t r i c t ion  to a posi t ive-def ini te  ma t r ix  (87) r ep re sen t s  an additional cons t ra in t  on the 
definition of equi l ibr ium (in addition to the inherent  const ra int  (82)), since o therwise  the de te rminant  of 
ma t r ix  (84) would be equal to zero  and the requi red  resu l t s  (85)-(87) would not be obtained. 

Let  us inse r t  conditions (85)-(87) into the defining equations.  The thermodynamic  defining equations 
(44) and (45) do not change and, the re fo re ,  the ent i re  thermodynamic  s t ruc tu re  r ema ins  unchanged. This 
factually p roves  the postulate of local  equi l ibr ium for  our l inear  mixture  of fluids. F r o m  the defining 
equation (46) we find that 

j = o ,  (88) 

i. e . ,  at equi l ibr ium the thermal  flux is zero,  f rom Eq. (47) we find that 

~ o f ,  (89) 
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at equilibrium, and f rom the defining equation (25) we find that 

T~ = --P~U, 

i. e. ,  at equilibrium stress becomes pressure. 

For equilibrium, the fundamental conservation equations (9), 
to 

Dp= = 0, 
Dt 

Dv vP~ q- p~F~ q- k~, 
Pcr 

Dt 

Du 
- -  O ,  

Dt 

ms 
~0. 

Dt 

(90) 

(11), (12), and (13) reduce respect ively  

(91) 

(expression (60) as well as kinematic re lat ions between (9) and der ivat ives  with respec t  to t ime, as in [1, 
21], have been used in these transformations). Summation over all components yields 

L)P = 0, 
Dt 

and (92) can be transformed (with the aid of (89), (4), (58), and (34)) into 

(92) 

(93) 

(94) 

(95) 

D v  
9~ = 9aFa- -  P~V~%, (96) 

Dt 

f rom where,  with a summation and the aid of (49), (86), and (63), we obtain 

_ + ( 9 7 )  P Dt 
c~ 

As the resul ts  (91), (93)-(97) seem still not p rec i se  enough, we introduce an additional constraint  on 
the definition of equilibrium, namely one stating that at equil ibrium in a given location there  occurs  no v a r i -  
ation with t ime: 

Op~ _ Os~ = Ou~ _ O T = 0 ,  Ov _ 0 .  (98) 
Ot Ot Ot Ot Ot 

We have thus defined equil ibrium by the constra int  (82) with the additional cons t ra in ts  (98) and of a 
posi t ive-defini te  matr ix  (84). A consequence of this definition are  conditions (85)-(90) and the following 
relat ions (derived f rom (91), (93)-(97)af ter  appropria te  t ransformat ions) :  

v.vp ~ = 0, (99) 

v.vs~ = o, (lOO) 

v.vu~ = 0, (101) 

v. (V| a = F~ --VP~, (102) 

~v . (~v)o  = :E p~F~ - -  @ ,  (lo3) 
(z 

where (V| a -= ( 1 / 2 ) [ V | 1 7 4  is the spin tensor .  

F rom this equation we obtain well known cases  of equilibrium, such as equil ibrium in a field of cen -  
tr ifugal fo rces  when F a = 0, equil ibrium in a field of external fo rces  when v = 0, and, most  important ,  a 
homogeneous equil ibrium sys tem when Fc~ = 0 and the velocity gradients  are  zero.  

Thus, in the las t  case we have (in addition to (85)-(88) and (90), f rom (89) and (99)-(103)): 

w ~  = - v ~  = v , , ~  = w ~  = v p ~  = o (lO4) 

and k = 0, i . e . ,  a homogeneity of p roper t i es  {n this system,  inasmuch as the homogeneity proper ty  is 
logically invariant with respec t  to changes in velocity v. 
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In a volume V of a homogeneous sys tem at equi l ibr ium we may let  

the mass  of component a be 

the mass  of the mixture  be 

and the quantity Y 

m~ ~ p~V, (105) 

m ~ pV (106) 

Y ~ my, (107) 

represen t ing  the internal  energy U, the entropy S, the enthalpy H, the f ree  energy F, the f ree  enthalpy G, 
and the volume V which co r respond  to the specific quanti t ies of the mixture  y(u, s, h, f, g, v). 

we obtain 

Using (66) and 

m~, ~ '~  ~ ,  (io8) 
(.~o~ = ~ / / ~ - - -  

m ' A . ~  
o~ 

Y = m y ( T ,  P, wl)-=-Y (T, P, m l, m~). 

Differentiat ing functions Y and using (108), (64), 
the additional const ra int  (67)) yields 

(109) 

(78) (we emphasize that Eq. (78) is satisfied under 

a~ a~ 
Omi = Yl, am.. = y~' (110) 

and it has thus been proved that in a homogeneous sys tem at equil ibrium Yl, Y2 coincide with the par t ia l  
specific quantit ies which in a c lass ica l  t he rmochemis t ry  are  defined (in mola r  units) as the lef t -hand sides 

2 

Oy 
OP (I11) 

of Eqs. (110). 

It follows f rom (109) (see, for  instance,  (80), (81)) that 

- - = r n  , ~ = m - - -  
OT OT OP 

It is now c lea r  that we have obtained here  the ent i re  s t ruc tu re  of c lass ica l  t he rmoehemis t ry  for  a homo-  
geneous sys tem at equil ibrium (Gibbs equation, Gibbs- -Duhem equation, etc.  ). 

It s eems  that the definition of equi l ibr ium needs to be fur ther  e laborated,  since the additional con-  
s t ra ints  (98) and of a posi t ive-def ini te  ma t r ix  (84) a re  not sufficiently justified. On the other  hand, we have 
not used he re  the typical  p roper ty  of equi l ibr ium stabili ty (see M. E. Gurtin [26, 3]). 

Finally,  we compare  these resu l t s  (see also [15-19]) with those of i r r e v e r s i b l e  the rmodynamics  [27- 
30]. Within the scope of this presentat ion,  we have proved the postulate of local equil ibrium. It is to be 
noted that this postulate does not apply in the general  case (nonlinearity [15]), but rat ional  the rmodynamics  
can be used successful ly  for  analyzing all these cases .  

The defining equations (46), (47), and (25) he re  are  l inear  in form,  with coeff icients  which a re  func- 
t ions of T, Pl, P2 only and sat isfy the Curie postulate.  In o rde r  to explain this be t ter ,  we take the diffusion 
cu r r en t  PlV12 of component 1 ( r e fe r r ed  to the veloci ty of component 2) f rom the defining equation (47), ex-  
p r e s s  k 1 in t e r m s  of the balance equation (11) with (4), (58), (34), and (25) as 

= -tp  + (112) 

( ~  denotes the t ensor  of par t ia l  fr ict ion),  the i so thermal  gradient  of chemical  potential  

-~ 0~l vT v r ~ - ~  W~ - ~-~ 

and relat ion (80) (assuming, of course ,  that ~l ~ 0), so that 

--plVl~ = -~1 Xl § T 

(113) 

(114) 
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where the diffusion mot ive  fo rce  is defined as  

1 ~ ! o (p~vO + v.(p~v~| (11s) XI~-VT~I1--Fi '~-~1 v'I~I+l + Pl O T  

Inse r t ing  (114) into (46) y ie lds  

__j  791 X lq-  x T +  - - b  v l n T -  (116) 
Ih ~1 ~ r 

Rela t ions  (114), (115), and (116) coincide exact ly  with the e x p r e s s i o n s  der ived  by the conventional method 
of i r r e v e r s i b l e  t h e r m o d y n a m i c s  [31], when starting__put f r o m  the s ame  equations of balance [21]. In e x -  
p r e s s i o n s  (114) and (116) the mot ive  f o r c e s  XI and VlnT have phenomenological  coeff ic ients  which a r e  func-  
t ions of T, PI, and P2 only. 

It is  in te res t ing  to note in (114) and (116) that  the O n s a g e r  re la t ions ,  which so f a r  not yet  been de-  
r ived  by the method of ra t ional  t h e r m o d y n a m i c s ,  a r e  val id  in our  case  under  the s imple  assumpt ion  that  

== 0. (117) 

This  is not p rec luded  by (37) and, f u r t h e r m o r e ,  one of the additional cons t ra in t s  on equi l ibr ium namely  that  
of a pos i t ive-def in i te  m a t r i x  (84), will be just i f ied (see (36), {37)), if f r ic t ion is  d i s r ega rded  ( d  a = 0) with 
the logical  a s sumpt ion  that  fil > 0 and ~l  > 0. This  again con f i rms  the poss ib i l i ty  of a re la t ion  between the 
Osnager  re la t ions  and the equi l ibr ium p r o p e r t i e s  (see the note on page 114 in [3]). 

In conclusion,  we would like to r epea t  True  sde l l ' s  s t a tement  [3] that  the t e r m  " ra t iona l  t h e r m o d y n a m -  
ics"  denotes only a new approach  to the descr ip t ion  of t he rmodynamic  phenomena (it does not imply that  
some other  approach  is  i r ra t iona l ) .  In fact ,  this  is t rue  t h e r m o d y n a m i c s  and what we usual ly  call  t h e r -  
modynamics  is r ea l ly  t h e r m o s t a t i c s .  In i r r e v e r s i b l e  t h e r m o d y n a m i c s  one u s e s  the r e s u l t s  of t h e r m o s t a t -  
ics  and this  is  what, in pr inciple ,  r e s t r i c t s  the scope.  

We endeavored  to demons t r a t e  that  (rational) t h e r m o d y n a m i c s  in the e x t r e m e  case  contains  the r e -  
sults  of r e v e r s i b l e  t he rm odynam i cs ,  but in addition to that  v e r y  special  case  it can, in pr inc ip le  at leas t ,  
desc r ibe  the behav io r  of any m a t e r i a l  under  any conditions.  

The author  thanks Academic ian  A. V. Lykov, m e m b e r  of the BSSR Academy of Sciences  and Prof .  
L. S. Kotousov for  the i r  in te res t  in this  study and for  t he i r  valuable  a s s i s t a n c e  in p r epa r ing  the manu-  
sc r ip t  and the pr in ted  text ,  and a lso  Dr.  P. Vonka for  his  d iscuss ion.  
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